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On Einstein’s stationary spherically 
symmetric cluster of particles 

A F da F Teixeira and M M Som 
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, GB, B r a d  

Received 9 October 1973 

Abstract. It is shown that Einstein equations allow a special class of stationary solutions 
which correspond to spherically symmetric clusters of particles in circular motions, the total 
angular momentum of the cluster being zero, and all orbits being performed with the same 
period. The mass density of such clusters is everywhere regular and positive, decreasing with 
increasing radius. 

1. Introduction 

To investigate the mathematical and physical significance of the Schwarzschild singu- 
larity, Einstein (1939) in an ingenious way introduced rotation without angular 
momentum in a system with spherical symmetry. He considered a stationary cluster 
of particles moving in circular orbits about the centre of symmetry under the influence 
of the gravitational field produced by all of them together. To have spherical symmetry 
it was assumed that the phases of motion and the orientation of orbits were perfectly 
at random. For such a distribution Schwarzschild singularities do not exist in physical 
reality, because if a cluster of given mass shrinks to the Schwarzschild radius its outer- 
most particles would attain velocities greater than that of light. 

The aim of the present work is to investigate a similar stationary spherically sym- 
metric cluster of particles under a constraint of motion. If  one assumes that all orbits 
are performed with the same period, for a given gravitational mass the radius of the 
cluster depends only on the period, and has a minimum which is three halves the 
Schwarzschild radius. Further, one can construct solutions corresponding to  unbounded 
clusters. The mass density of such clusters, bounded or not, is everywhere regular and 
positive, decreasing with increasing radial distance. 

2. Field equations 

With a suitable choice of spherical coordinates, xp = (xo, r ,  8,4), it is possible to  obtain 
stationary spherically symmetric line elements in the form (Anderson 1967, we use his 
notation and conventions) 

(1) ds2 = e’(dx0)2 - eA dr2 - ?(de2 + sin28 d4’), 

G: E R{-(R/2)6? = - ( S ~ T C / C ~ ) T : .  

where v = v(r) and 1, = A(r). The Einstein field equations are given by 

(2) 

838 
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where T': is the energy-stress tensor. For a stationary spherical symmetric cluster of 
particles one can consider this tensor in the form 

(4) 

where a(r)  is some function related to  the components of the velocity vectors of the 
particles, and p ( r )  is a continuous mass distribution corresponding to the whole of the 
particles. 

Inserting the expressions for g,, and T t  from (1) and (4) respectively into the field 
equations (2) we obtain 

T': = c2p  diag( 1 + a2, 0, - a2 /2 ,  - a2/2) ,  

and 

G: G: = e-'(2rvl + rv: + 2v1 - rvl%l)/4r = 4nGpa2/c2, (7) 

where the subscript 1 means d/dr. We can simplify the task of obtaining the solutions 
of this set of equations. Indeed, contracted Bianchi identities G;,, = 0 connected to  the 
Einstein equations (2) impose the equations of motion Tt; ,  = 0 ;  from these, the equation 
v = 1 is the only one which does not vanish identically, and gives 

r v l  = 2a2/(1 +a2).  (8) 

The four equations (5) to  (8) are not independent, however. We shall conveniently 
consider ( 5 ) ,  (6 )  and (8) as the equations of our problem. Thus we have three equations 
to be satisfied by four unknown functions (v ,  R ,  p and a). 

Our purpose is to investigate the distribution under a particular constraint of motion, 
so we choose a arbitrarily. Equation (8) determines v. Substitution of v in equation (6) 
determines R. One then can easily find the mass density p from equation (5). 

Let us put a2 = 0 2 r 2 / c 2  where o is an arbitrary positive constant. Then from 
equations ( 5 ) ,  ( 6 )  and (8) we have 

p = 3o2(47tG)- '( 1 + 3 ~ ' r ~ / c ~ ) - ~ ,  

e' = (1 + 3w2r2/c2)( 1 + co2r2/c2)- 

and 

e' = ~ ( 1  +02r2/c2),  

where A is a constant of integration. 

geodesic equations. 
The constants A and w will be interpreted from the boundary conditions and 

3. Motion of particles in the gravitationd field 

The motion of any particles in the field of others is governed by the geodesic equation 

- 0, ds ds 
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with the supplementary condition 

dx” dx’ 
” ds ds 

g - - = l .  

Now we define a time-like Killing vector field 5’’ associated to  our spherically symmetric 
stationary field, that is, 

T 2  E gpvT’Tv > 0 and T , ; ’ + 5 ’ ; p  = 0 :  (14) 

97: = st - T,T’/T2, 

U P  = 9 7 : u “ T ” ” 2 ( T p u p ) -  ’. (16) 

vf = -c2g,vU’Uv. (17) 

with its help we construct the projection tensor 

(15) 

and the covariant ‘normal’ velocity (of an object of velocity U’ = dx’/ds) 

The norm of this vector corresponds to  the norm of the classical velocity of the object, 

One can easily verify that = (1,0,0,0) satisfies (14), and that the corresponding 
99; = diag(0, I, 1, 1). In order to  simplify calculation of U ,  we consider a particle of 
the cluster in equatorial motion : then its up = (U’, 0, 0, u3), where due to  the restriction 
imposed by (13) (u’)~ = A -  ’[ 1 + ( r ~ ~ ) ~ ]  (1 + w2r2/c2)- ’. Then the geodesic equation 
(12) gives for p = 1 after straightforward calculation (u3(  = w/c and thus U’ = A - ’ ’ 2 :  
finally substituting U” = ( A - ’ ’ 2 ,  O,O, w/c) into (16) and (17) we get 

U, = rw( 1 + w2r2/c2)- ‘ I 2 .  

Thus we see that for wr >> c we have U ,  + c and for wr << c, U, + rw, so that w is 
angular velocity in this limit. 

We have shown already that for any equatorial particle 12 = Id#/dsl = w/c, 
irrespective of radial distance from the centre of symmetry. Since we are considering 
a distribution having spherical symmetry, this result is true for any arbitrary circular 
orbit. This in turn shows that every particle of the cluster completes a revolution in 
the same proper time 27r/w. However large the cluster may be, the outermost particles 
have classical velocities that only tend to  that of light. 

4. Bounded clusters 

Outside the cluster, the field is represented by Schwarzschild’s solution which is given by 

(18) 
Since on the boundary r = a one must have continuity of all g,, , we obtain by comparison 
with (10) and (1 1) 

(19) 

ds2 = [l - 2Gm/(c2r)] ( d ~ ’ ) ~  - [ 1 - 2Gm/(c2r)]- ’ dr2 - r2(de2 + sin2@ d#2). 

A = (1 + 3w2a2/c2)- ’ 
and 

m = (1 + 3w2a2/c2)- ‘w2a3/G. 

Incidentally we verify that dg,,/dr is also continuous on the boundary, but dg, Jdr 
is not. 
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If one substitutes the expression for m in (18) one obtains for r > a 

goo = (1 + 3w2a2/c2)- ’[ 1 + (3 - 2a/r)w2a2/c2] : (21) 

this explicity shows that whatever the size of the cluster is, the Schwarzschild singularity 
does not appear. However, from (20) we get 

o2 = mGa-’(a - 3Gm/c2)- ’, 

a .  mm = 1 r  2 S? 

(22) 

and we see that for a fixed value of m the cluster can be shrunk to any radius greater than 

(23) 

where rs = 2Gm/c2 is the Schwarzschild radius associated with m. This result coincides 
with Einstein’s general inequality 

riso > Gm(1 + J3/2)/c2 

where the isotropic radial coordinate riso is related to our r by 

r = [ 1 + Gm/(2c2riso)]2riso. 

5. Unbounded clusters 

For unbounded clusters we take goo = 1 at the origin, so A = 1 in equation (1 1). 

given by the same expressions (9) and (10). 

to the mass density p : 

Since mass density p and gravitational potential g,  do not depend on A ,  these are 

The scalar curvature R ,  which can easily be computed from (2) and (4), is proportional 

R = 8nGp/c2. (24) 

6. Conclusions 

For bounded clusters we see that near the origin p and g,  , tend to  their classical values, 
the same happening to  goo in the case of ‘slow’(oa << c) clusters. With increasing distance 
inside the cluster we have a decreasing p and increasing goo and lg, ,I ; on the boundary 
we have the values 

go, = lgll1-l = (l+w2a2/c2)(1+302a2/c2)-’. 

Outside the cluster we have goo = lg, ,I - ’ tending monotonically to  their Minkowski 
value at infinity. 

From equation (21) it is evident that the Schwarzschild singularity does not appear 
in any region of the bounded cluster in striking contrast to  the incompressible fluid 
sphere of Schwarzschild (1916). 

In unbounded clusters we have near the centre p, goo and g,  tending to their classical 
values. With increasing distance from the centre, p decreases monotonically to  zero at 
infinity, lg, ,I increases monotonically to the value three at  infinity, and goo increases 
monotonically to  CO at infinity : however, the scalar curvature R decreases monotonically 
from 602/c2 at the origin to zero at infinity. The analogue of classical three-velocity of 
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particles is rm near the origin, and increases monotonically to the velocity of light c 
at infinity. We have obtained similar results for distributions having rotational symmetry 
with zero net angular momentum (Teixeira and Som 1974). 
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